1022

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

A Parallel Mixed Integer Programming-Finite Element Method Technique
for Global Design Optimization of Power Transformers

Eleftherios I. Amoiralis', Marina A. Tsili?, Pavlos S. Georgilakisl, Antonios G. Kladas?, and
Athanassios T. Souflaris®

! Department of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece
2Faculty of Electrical and Computer Engineering, National Technical University of Athens, GR-15780 Athens, Greece
3Schneider Electric AE, Elvim Plant, GR-32011 Inofyta, Greece

Transformer design optimization is determined by minimizing the transformer cost taking into consideration constraints imposed both
by international specifications and customer needs. The main purpose of this work is the development and validation of an optimization
technique based on a parallel mixed integer nonlinear programming methodology in conjunction with the finite element method, in order
to reach a global optimum design of wound core power transformers. The proposed optimization methodology has been implemented
into software able to provide a global feasible solution for every given set of initial values for the design variables, rendering it suitable

for application in the industrial transformer design environment.

Index Terms—Design methodology, finite element methods, mixed integer programming, optimization methods, power transformers.

I. INTRODUCTION

RANSFORMER design optimization seeks a constrained

minimum cost solution by optimally setting the trans-
former geometry parameters and the relevant electrical and
magnetic quantities. The difficulty in achieving the optimum
balance between the transformer cost and performance is be-
coming even more complicated nowadays, as the manufac-
turing materials (copper, aluminum, steel) are highly variable
stock exchange commodities. Techniques that include mathe-
matical models employing analytical formulas, based on design
constants and approximations for the calculation of the trans-
former parameters are often the base of the design process
adopted by transformer manufacturers [1]. However, the rele-
vant technical literature comprises a variety of other approaches
in order to cope with the complex problem of transformer de-
sign optimization, based on stochastic optimization methods
such as genetic algorithms (GAs) that have been used for
power transformer cost minimization [2], performance opti-
mization of cast-resin distribution transformers with stack core
technology [3] or toroidal core transformers [4]. The com-
putational complexity of stochastic methods becomes quite
considerable in case of the numerous iterations that may be
required in order to achieve overall transformer optimization,
therefore limiting the application of such methods in certain
aspects of transformer design, as in [5] and [6], where artificial
intelligence techniques are used for winding material selection
and prediction of transformer losses and reactance, respec-
tively, or [7], where particle swarm optimization is applied
for the transformer thermal parameters estimation. Moreover,
the optimality of the solution provided by GAs and other sto-
chastic methods cannot be guaranteed [8] and multiple runs
may result to different suboptimal solutions, with a significant
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difference between the worst and the best one. On the other
hand, deterministic methods may provide more robust solu-
tions to the transformer design optimization problem. In this
context, the deterministic method of geometric programming
has been proposed in [9] in order to deal with the design op-
timization problem of both low-frequency and high-frequency
transformer. An important improvement in deterministic design
optimization methods can be implemented by the incorporation
of numerical methods, and various approaches have been de-
veloped [10], [11].

During the formulation of the transformer optimization
problem, it is important to note that all the design variables can
assume not only continuous values but also integer values (e.g.,
number of winding turns), thus, mixed integer programming
(MIP) techniques [12] are very suitable for such problems.
Moreover, there may be a number of suboptimal solutions to
the problem, and the possibility of convergence to local optima
has to be avoided. A method to locate the global optimum
among the various local optima should therefore be adopted,
with the least possible computational effort.

The present paper introduces the application of MIP to the
transformer design optimization, developing a novel parallel im-
plementation of MIP linked to finite element method (FEM),
enhancing convergence to the global optimal solution. The nov-
elty of the proposed method is based on the adoption of a 3-D
cost-effective transformer FEM model that is directly linked to
the proposed parallel MIP technique, ensuring its ability to reach
a global optimum while maintaining low execution times.

The paper is organized as follows. Section II provides
the mathematical background of the MIP method and the
implementation details of the novel parallel MIP technique.
Section III presents the transformer FEM model along with its
importance for the convergence characteristics of the proposed
methodology. Section IV presents the results from the appli-
cation of the method to different actual transformer designs.
These results prove the robustness and the efficiency of the
proposed method in the solution of the transformer design
optimization problem. Section V concludes the paper.
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II. PROPOSED METHODOLOGY

A. Description of the Optimization Model

In order to find the global optimum of a constrained multi-
variable function, MIP implements the Branch and Bound (BB)
algorithm [13]. The standard form of a nonlinear objective func-
tion f(x) with n design variables z; to be minimized by MIP is

min f(z) = min’y _ ¢; f;(z) M
z 3
subject to the following constraints:

> aijw; <bi i=1,2,...,m )

Jj=1
z; >0, 7=12,...,n 3)
zj € N forallorsome j =1,2,...,n “)
lbjnggubj, j=1,2,...,n (5)

where f is an X 1 matrix of objective functions f;, cisan x 1
matrix of objective function coefficients c;, z is an x 1 matrix
of design variables z;, a is a m X n matrix of constraints coeffi-
cients, b is a m x 1 matrix of the upper values of the constraints,
N refers to the set {0, 1, ...}, and [b and ub are n X 1 matrices
of lower and upper bounds on z, respectively.

The BB method solves MIP by solving a sequence of non-
linear programming problems obtained by relaxing integrality
conditions and including additional constraints. The number of
additional constraints increases as the BB procedure progresses.
These constraints separate the feasible region into complemen-
tary subregions. In particular, the BB method initially sets up
lower and upper bounds for the optimal solution (objective func-
tion optimal value). The branching strategy iteratively decreases
the upper bound and increases the lower bound. The difference
between those bounds is a measure of the proximity of the cur-
rent solution to the optimal solution if it exists. When mini-
mizing, a lower bound for the optimal solution can be found
by relaxing the integrality constraints of the original MIP and
solving the resulting MIP. Analogously, the objective function
value for any solution (satisfying integrality conditions) of the
original MIP is the upper bound of the optimal solution.

This paper proposes a parallel MIP methodology in conjunc-
tion with FEM that operates as follows (Fig. 1): at the first stage,
the upper and lower bounds of the design vector are selected in
accordance with the transformer rated power, defining the in-
terval of the design variables. Afterward, a set of subintervals
for the design variables is generated (randomly by software im-
plementation of the proposed methodology or manually by the
user of that software), and distributed into ¢ parallel implemen-
tations of MIP. The initial values of each MIP derive from the
mean value of the selected bounds, while the transformer pa-
rameters are calculated by an algebraic design model, based on
analytical equations. In doing so, local optima are avoided. The
FEM-based cycle of iterations uses the parallel MIP solution as
initial vector and converges to global optimum. In this proce-
dure, the solution does not depend on the initial values of the
design vector, and there is no need for fine-tuning the conver-
gence parameters of the optimization algorithm. The parallel
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Fig. 1. Flowchart of the proposed technique.

implementation of the MIP cycles reduces the respective com-
putational time by a factor at least equal to 1/q. Moreover, it
enhances the overall process by feeding the last cycle a tenta-
tive solution near the optimal one, thus reducing the number of
the more time consuming FEM-based iterations. Furthermore,
other difficulties in the statement of the problem and its adapta-
tion to each considered transformer, which may exist during the
application of stochastic optimization methods, are bypassed.

B. Mathematical Formulation of the Transformer Design
Optimization Problem

The goal of the proposed parallel mixed integer optimization
process is to find a set of integer variables linked to a set of
continuous variables that minimize the objective function (ac-
tive part cost) and meet the restrictions imposed on the trans-
former design problem. Under the previous definitions, a mixed
integer nonlinear problem for optimizing the transformer design
is based on the minimization of the cost of the transformer ac-
tive part

4
min f(z) = min Z c;jfi(z) (6)
z =

where c; is the primary winding unit cost (Euros per kilogram),
f1 is the primary winding weight (kilograms), co is the sec-
ondary winding unit cost (Euros per kilogram), fs is the sec-
ondary winding weight (kilograms), cs is the magnetic mate-
rial unit cost (Euros per kilogram), f3 is the magnetic material
weight (kilogram), ¢4 is the insulating paper unit cost (Euros per
kilogram), f, is the insulating paper weight (kilogram), and z
is the vector of the five design variables, namely the number of
low-voltage turns, the width of core leg (D), the core window
height (@), the magnetic induction magnitude (B) and the core
material type.



1024

Fig. 2. FEM model and core constructional parameters (G height of the core
window, D: width of the core leg, Eu: thickness of the core leg).

The minimization of the cost of the transformer active part is
subject to the following constraints that are based on the toler-
ances specified by IEC 60076-1 [14].

DNLL+DLL—1.10-(GNLL+GLL) <0  (7)

DNLL-115-GNLL <0 ®)
DLL —-1.15-GLL <0 )
0.90-GU < DU < 1.10-GU (10)
where

DNLL designed no-load losses (W)

DLL designed load losses (W)

DU designed short-circuit impedance (%).

GNLL guaranteed no-load losses (W)

GLL guaranteed load losses (W)

GU guaranteed short-circuit impedance (percent).

III. INTEGRATION OF FEM TO THE OPTIMIZATION MODEL

A. Transformer FEM Model

Fig. 2 illustrates the FEM model adopted in the development
of the optimization technique [15]. It comprises the low- and
high-voltage windings of one phase, as well as the small and
large iron core that surrounds them. Due to the symmetries of the
problem, the model is reduced to one fourth of the device. The
integration of the FEM model into the optimization algorithm is
realized as follows (Fig. 1): the optimal solution provided by the
parallel MIP method is used as the initial vector for the design
variables and a new cycle of iterations is performed, reducing
the design variables only to the continuous ones (the remaining
integer variables are considered equal to the optimal value pro-
vided by the previous iterations). During this cycle, FEM is used
for the calculation of the transformer characteristics.

B. FEM Contribution to Global Optimum Convergence

Although the proposed parallel MIP methodology is partic-
ularly suitable for the transformer design optimization, diffi-
culties in its convergence may be experienced, a problem that
is well known in deterministic algorithms during the solution
of nonlinear optimization problems with multiple local optima.
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TABLE 1
TECHNICAL CHARACTERISTICS OF THE CONSIDERED TRANSFORMERS

Rated Primary / Guaranteed  Guaranteed Guaranteed
power secondary load loss no-load loss short-circuit
(kVA)  voltages (kV) (W) (W) impedance (%)

160 20/04 2350 300 4

250 11/04 3250 530 4

400 20/04 4600 610 4

630 21/0.42 8700 1200 6

1000 21/0.42 13000 1700 6

1600 20/04 20000 2600 6

TABLE 11

CoST COMPARISON OF OPTIMUM DESIGNS PROVIDED BY THE PROPOSED AND
THE CURRENT TRANSFORMER DESIGN METHODOLOGY

Rated Cost of the Cost of the T
power proposed current Cost rcducflon auhlevec‘i) by
(kVA) method (€) method (€) the proposed method (%)
160 1865 1894 1.52
250 2268 2369 427
400 3588 3810 583
630 3692 3759 1.80
1000 4948 5185 457
1600 7682 8140 56
Average 3.94

These difficulties are likely to arise in cases of designs with spe-
cial requirements, where compatibility to the constraints may
direct the method to seek for the optimum in subintervals where
there is no feasible solution, eliminating the possibility of con-
vergence. However, the integration of FEM to the optimization
overcomes this possibility, ensuring convergence to the global
optimum in any case. This ability renders FEM an essential part
of the proposed method, since the lack of the FEM-based cycle
of iterations may result to inability to find a feasible solution or
local optimal traps.

IV. RESULTS AND DISCUSSION

The robustness of the proposed methodology is presented in
comparison with that of current methodology [1] that is already
applied in a transformer manufacturing industry. The proposed
method minimizes the cost of the transformer active part, (6),
subject to the constraints (7)—(10) by seeking the optimum set-
tings of the five design variables, namely, the core construc-
tional parameters D and GG shown in Fig. 2 (continuous vari-
ables), the magnetic induction (continuous variable), the type
of the core magnetic steel, namely M4 0.27, MOH 0.27, MOH
0.23, ZDMH90 0.23 (each of the four types are represented by
an integer identification number), and the number of turns (in-
teger variable). Six actual transformer designs are considered,
using different loss categories, according to CENELEC (Har-
monization document, HD 428.1 S1:1992). The common tech-
nical characteristics of these six designs are: the material of the
external and internal coil is copper, the vector group is Dynl1
apart from 1600 kVA that is Dyn5, and the operating frequency
is 50 Hz. Table I shows the technical characteristics of each
transformer. Table II compares the cost of each optimal trans-
former design obtained a) by the proposed method, and b) by
the current method [1] that is based on a heuristic optimization
technique. Table II clearly illustrates that the proposed method
converges to an optimum solution that has on average a 3.94%
lower cost than the current method used by the manufacturer.
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Fig. 3. Comparison of characteristics of the optimum designs provided by the
proposed and the current design method, for the 250-kVA transformer.
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Fig. 4. Convergence history of the proposed technique in the case of the
250-k VA transformer design optimization.

The mean time needed for the convergence of the proposed al-
gorithm to the solutions of Table II is 15 min in an average
performance computer (80% of this time is consumed on the
FEM-based cycle of iterations). Apart from the better conver-
gence characteristics of the proposed algorithm, the difference
between the optimum values is due to the difference in the per-
missible range of the design variables used in the heuristic algo-
rithm, which is confined to discrete steps of the variables instead
of the complete interval [Ib ub].

Fig. 3 presents the comparison of technical characteristics
of the optimum designs provided by the proposed and the cur-
rent method, for the 250-kVA transformer. The optimal design
vector of the proposed method, for this transformer is: number
of low-voltage turns = 18, D = 250 mm, G = 250 mm,
B = 16620 Gauss and the type of core material is MOH 0.27.

Fig. 4 shows the convergence history of the proposed method
for the 250-k VA transformer, concerning the active part cost, re-
sulting in an optimum (minimum) cost of 2268 Euros provided
by the FEM cycle (third cycle), after ¢ = 2 parallel MIP cy-
cles, where the first and the second cycle correspond to the two
parallel MIP cycles. The optimum value provided by the FEM
cycle appears to be slightly worse than the one provided by the
two parallel MIP cycles, due to the errors of the simplified an-
alytical formulas of the design model employed in MIP cycle.
These errors are overcome by the enhanced accuracy provided
by FEM, resulting to the convergence to the global optimum.
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V. CONCLUSION

In this paper, a parallel MIP technique using the BB algorithm
and FEM method is proposed for the solution of the power trans-
former design optimization problem. The proposed method is
very effective because of its robustness, its high execution speed
and its ability to effectively search the large solution space. The
difficulty of convergence to a global optimum often encountered
by deterministic methods during the solution of nonlinear prob-
lems is overcome by the proposed finite element incorporation
to the parallel MIP model. Moreover, the global optimum ob-
tained by the proposed method is not satisfactorily approached
by continuous variable optimization techniques. The validity of
the proposed method is clearly illustrated by its application to
a wide spectrum of actual transformers, of different voltage rat-
ings and loss categories, resulting to optimum designs with an
average cost saving of 3.94% in comparison with the existing
method used by a transformer manufacturer. The application of
the proposed parallel MIP-FEM method can be generalized to
the optimum design of other electric machines.
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